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Abstract. In this paper, we present new attacks on the redactable sig-
nature scheme introduced by Kundu and Bertino at VLDB ’08. This
extends the work done by Brzuska et al. at ACNS ’10 and Samelin et
al. at ISPEC ’12. The attacks address unforgeability, transparency and
privacy. Based on the ideas of Kundu and Bertino, we introduce a new
provably secure construction. The corresponding security model is more
flexible than the one introduced by Brzuska et al. Moreover, we have im-
plemented schemes introduced by Brzuska et al. and Kundu and Bertino.
The evaluation shows that schemes with a quadratic complexity become
unuseable very fast.

1 Introduction

A redactable signature scheme (RSS) allows a third party, we name sanitizer,
to redact contents of a signed document m = m[1]|| . . . ||m[n] to generate a
sanitized version of the document, which signature σ is still valid. This action
can be performed without involvement of the original signer and without knowing
any private keys. In more detail, a RSS allows to replace a block m[i] ∈ m with
∅. Thus, a redaction leaves a blinded data vector m′, where m′ = m \ m[i].
Moreover, a third party is still able to verify that all received blocks and their
ordering are authentic. Kundu and Bertino were the first to apply this paradigm
to tree-structured data [12]. In this paper, we present new attacks on the scheme
introduced by Kundu and Bertino [12]. This extends the work done by Brzuska
et al. [5] and Samelin et al. [20]. We introduce a provably secure scheme based
on their initial idea in this paper. Moreover, we have implemented the first
version of Kundu and Bertino’s scheme [12] and the secure scheme by Brzuska et
al. [5]. We provide a detailed performance analysis of our implementations in this
paper. Our new scheme’s performance is comparable to the scheme introduced
by Kundu and Bertino in [12]: the runtime and storage complexity is in O(n),
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if a RSS for lists, protecting the ordering among its elements, is used, which is
also in O(n) for both metrics. As an example, the scheme introduced in [19]
achieves this. Other existing provably secure schemes for trees have a runtime
and storage complexity of O(n2) [5].

State of the Art. The term RSS was coined in 2002 by Johnson et al. in [10].
In the same year, Steinfeld and Bull introduced the same concept as ”Content
Extraction Signatures” [21]. Since then, RSS have been subject to much research
and got extended to tree-structured data [5, 12, 13] and to arbitrary graphs [15].
Samelin et al. introduced the concept of redactable structure in [20].

A related concept are Sanitizable Signature Schemes (SSS), introduced by Ate-
niese et al. in [3]. In a SSS, the sanitizer does not delete blocks, but can modify
m[i] into an arbitrary string m[i]′ ∈ {0, 1}∗ [6]. It is possible to restrict sanitizers
in SSSs to certain values. This is a well-known field; refer to [7, 11] for related
work. Approaches to merge SSSs and tree-structured data have also been pub-
lished, e.g., in [18]. Pöhls et al. show in [18] that RSSs for lists are not suitable
for tree-structured documents in certain scenarios. We only discuss RSSs in this
paper, since SSSs require an additional key pair.

Brzuska et al. defined and formalized a set of desired properties for redactable
tree-structured documents in [5]. Kundu and Bertino showed in [13], that non-
private RSS can be attacked using “side-channel” information, i.e., if the position
of a redacted block is visible, one may be able to reconstruct some information.
They name these type of vulnerability “inference attacks” [13]. Consider the
following example clarifying this statement: in a XML-based patient record of
a hospital, which has exactly two wards, i.e., cancer and surgery, a sub-tree
represents the treatments in each ward. Hence, if a patient has been treated in
both wards and one subtree has been removed and a third party sees ∅, it can
deduce, using the knowledge that two wards exist and the information about
the structure of the patient record, that the patient has been treated in both
wards. This impacts on privacy and is not acceptable in certain scenarios. The
scheme introduced in [12] was originally proposed to address these problems.
However, two attacks on this scheme have been published already: one attacking
transparency and privacy [5] and one attacking structural integrity [20].

Our Contribution and Organization of the Paper. The scheme introduced
in [12] has some very useful properties. In particular, it has a very low runtime
and storage complexity, i.e., both are O(n), where n = |V | is the number of
vertices in a tree T = (V,E). This makes their scheme the fastest one known
to the authors for both metrics. Other provably secure and transparent schemes
proposed, e.g., [5], have a complexity of O(n2), are only useable for lists [8, 20],
or are only able to quote substrings [2]. However, the scheme introduced in [2]
fulfills a very strong privacy notation, i.e., strong context-hiding. This notation
prohibits even the signer from deciding if two quotes have been derived from



the same source. We leave it as open work to develop such a scheme which
is not limited to quoting. In [5], the worst-case approximation depends on the
branching factor, which in the case of a tree with height 1, is O(n), where n is the
number of leafs. As the branching factor is not a constant factor anymore, the
growth will be quadratic in n. All other current schemes in O(n), e.g., the ones
introduced in [9] or [13], are susceptible to the attack on privacy introduced
by Brzuska et al.’s for the scheme by Kundu and Bertino in [5]. This is due
to fact that appending ordered random numbers cannot be sufficient to hide
redactions [5]. However, we use the ideas of the of [12] and [13] to propose a new
construction which is provably secure and not inheriting its flaws. We contribute
by adding new attacks, breaking unforgeability, transparency and privacy. We
derive a provably secure construction based on their ideas. Moreover, we have
implemented the schemes by Brzuska et al. [5] and the scheme introduced in [12]
and show that schemes with a quadratic runtime complexity become unuseable
very fast.

Outline of the Paper. The rest of the paper is structured as follows. In
Sect. 2, we extend the existing definitions required to understand the schemes
presented. We will shortly restate the scheme by Kundu and Bertino [12], along
with the new attack vectors. The new scheme is presented in Sect. 3. How to
extend the new scheme to add additional useful properties, as proposed in [17]
and [20], is sketched in Sect. 4. We present our implementations along with the
corresponding performance analysis in Sect. 5. Finally, Sect. 6 concludes our
work. All formal proofs can be found in the appendices.

2 Preliminaries, the Scheme by Kundu and Bertino and
the Extended Security Model

We start this section by defining the algorithms of an RSS in general. Our nota-
tion is inspired by Brzuska et al. [5], but extended to allow redaction of non-leafs.
This is allowed in the scheme by Kundu and Bertino and offers more flexibility.
However, securely allowing this flexibility requires a revisitation. A thorough
discussion is given in Sect. 2.3.

Definition 1 (Redactable Signature Scheme). A RSS for trees RSST con-
sists of four PPT algorithms: RSST := (KeyGen,TSign,TVerify,TShare).

KeyGen. The key generation algorithm (sk,pk) ← KeyGen(1λ) outputs a key
pair consisting of the private key sk and the public key pk: (sk,pk) ←
KeyGen(1λ), on input of a security parameter λ.

TSign. The signing algorithm TSign(sk, T, r, i) takes as input the secret key sk,
the tree T , a flag r ∈ {0, 1} indicating, if the root is allowed to be redacted,



and a flag i = {0, 1} which indicates, if non-leafs can be redacted. We de-
fine that a 1 indicates that the corresponding action is allowed. It outputs a
signature σT over the tree T : (T, σT )← TSign(sk, T, r, i)

TVerify. The algorithm TVerify(T, pk, σT ) takes as input a tree T , a public key
pk and the signature σT . It outputs a bit d ∈ {0, 1}, which indicates, if σT is a
valid (d = 1) signature on T under the public key pk: d← TVerify(T, pk, σT )

TShare. The algorithm TShare(T, pk, σT ,N ) takes as input a tree T , a public
key pk and signature σT , as well as a set of nodes N ⊆ T to redact. It
returns a new tree T ′ ← mod(T,N ), along with a new signature σ′T resp.
⊥ on error, where mod is the function modifying the tree T w.r.t. N , i.e.,
T ′ = T \ N . Hence, TShare outputs (T ′, σ′T ) ← TShare(T, pk, σT ,N ), resp.
⊥ on error. We do not consider, if and how the edges between the nodes are
treated, if a redaction takes place. This is the concern of an instantiation of
a RSST . In particular, it depends on the concrete use case, if non-leafs are
allowed to be redacted. We want to leave this choice to the signer.

All algorithms must fulfill the usual correctness requirements. In particular, all
genuinely signed trees and trees created from them by TShare must verify. This
also implies that TShare always outputs a valid tree. How to actually ensure this
and what a valid tree in terms of the signature is, depends on the algorithms
and use cases. Note, if any result of the algorithms given is not a tree, the result
is treated as ⊥. We state the extended security model next.

The Extended Security Model. Brzuska et al. introduced and formalized
some security properties in [5]. Their model was the first rigid approach. It is very
restrictive by allowing the cutting of leafs of the tree only. We extend their model,
since the extended functionality of non-leaf redaction requires an adjustment.
We denote the transitive closure of T , w.r.t. TShare, as span`(T ), following [8]

and [20]. b
$← {0, 1} denotes that b is a random bit, drawn from a uniform

distribution. The following security properties have been derived from [5]. As
in the original model, the following definitions cater only for the information
an adversary can derive from the signature. If obvious redactions took place,
detectable or reversible using side-channel information, it may be trivial to decide
whether something has been redacted.

1. Unforgeability: No one should be able to compute a valid signature on a tree
T ∗ verifying under pk outside span`(T ), without access to the corresponding
secret key sk. This is analogous to the standard unforgeability requirement
for signature schemes, as already noted in [5]. A scheme RSST is unforge-
able, iff for any efficient (PPT) adversary A, the probability that the game
depicted in Fig. 1 returns 1, is negligible (as a function of λ). In this game,
the adversary has access to a signing oracle.

2. Privacy: No one should be able to gain any knowledge about the unmod-
ified tree from a redacted version without having access to the original.



Experiment UnforgeabilityRSSTA (λ)

(pk, sk)← KeyGen(1λ)

(T ∗, σ∗T )← ATSign(sk,... )(pk)
let i = 1, 2, . . . , q index the queries
to the signing oracle

return 1 iff
TVerify(T ∗, pk, σ∗T ) = 1 and
∀i : 0 < i ≤ q, T ∗ /∈ span`(Ti)

Fig. 1. Game for Unforgeability

Experiment TransparencyRSSTA (λ)

(pk, sk)← KeyGen(1λ)

b
$← {0, 1}

d← ATSign(sk,·),Adapt/Sign(...,sk,b)(pk)
where oracle Adapt/Sign for input T,N :

if N * T , return ⊥
if b = 0: (T, σT )← TSign(sk, T, r, i),

(T ′, σ′T )← TShare(T, pk, σT ,N )
if b = 1: T ′ ← mod(T,N )

(T ′, σ′T )← TSign(sk, T ′, r, i),
return (T ′, σ′T ).

return 1 iff b = d

Fig. 2. Game for Transparency

Experiment PrivacyRSSTA (λ)

(pk, sk)← KeyGen(1λ)

b
$← {0, 1}

d← ATSign(sk,·),LoRAdapt(...,sk,b)(pk)
return 1 iff b = d

Fig. 3. Game for Privacy

LoRAdapt(Tj,0,Nj,0, Tj,1,Nj,1, r, i, sk, b)
if mod(Tj,0,Nj,0) 6= mod(Tj,1,Nj,1) return ⊥
(Tj , σTj )← TSign(sk, Tj,b, r, i)
(T ′j , σ

′
Tj

)← TShare(Tj,b, pk, σTj,b ,Nj,b)
return (T ′j,b, σ

′
T,b)

Fig. 4. LoRAdapt Oracle for Privacy

This is similar to the standard indistinguishability notation for encryption
schemes [5]. We say that a scheme RSST is private, iff for any efficient
(PPT) adversary A, the probability that the game shown in Fig. 3 returns
1, is negligibly close to 1

2 (as a function of λ). In this game, the adversary
has to figure out, which input has been used by the LoR-Oracle.

3. Transparency: A third party should not be able to decide whether a signature
σT of a tree T has been created from scratch or through TShare. In other
words, a party who receives a signed tree T cannot tell whether he received a
freshly signed tree or a tree which has potentially been modified [5]. We say
that a scheme RSST is transparent, iff for any efficient (PPT) adversary A,
the probability that the game shown in Fig. 2 returns 1, is negligibly close
to 1

2 (as a function of λ). In this game, the adversary has to figure out, if
the signature has been created through TSign or TShare, encapsulated by
the Adapt/Sign-Oracle.

The implications given by Brzuska et al. in [5] and [6] do not change: trans-
parency =⇒ privacy, privacy ; transparency, and unforgeability is indepen-
dent. To avoid duplicate work, we omit the proofs, as only minor adjustments
are required.

2.1 Aggregate Signatures and Bilinear Pairings

Aggregate signatures (AGG) have been introduced by Boneh et al. in [4]. The
basic idea is as follows: given ` signatures, i.e., {σi | 0 < i ≤ `}, one constructs a



compressed signature σc which contains all signatures σi. This allows verifying
all given signatures σi by verifying σc. To construct such a scheme, let G1 be a
cyclic multiplicative group with prime order q, generated by g, i.e., G1 = 〈g〉.
Further, let GT denote a cyclic multiplicative group with the same prime order
q. Let ê : G1 ×G1 → GT , where GT = 〈ê(g, g)〉, be a bilinear map such that:

1. Bilinearity: ∀u, v ∈ G1 : ∀a, b ∈ Z/qZ : ê(ua, vb) = ê(u, v)ab

2. Non-degeneracy: ∃u, v ∈ G1 : ê(u, v) 6= 1

3. Computability: There is an efficient algorithm Abimap that calculates the
mapping ê for all u, v ∈ G1

Definition 2 (The BGLS-Scheme). The AGG by Boneh et al. [4] (BGLS-
Scheme) with public aggregation consists of five efficient algorithms. We will only
use one public key, Q, which allows a performance improvement, while making
sure that just one signing key is used. Next, we define:

AGG := (AKeyGen,ASign,AVerf,AAgg,AAggVerf)

AKeyGen. The algorithm KeyGen outputs the public and private key of the

signer, i.e., (pk, sk). sk
$← Z/qZ denote the signer’s private key. Addi-

tionally, let Hk : {0, 1}∗ → G1 be an ordinary cryptographic hash-function
from the family HK , modeled as a random oracle, and set Q ← gsk, where
〈g〉 = G1. Set the public parameters and key pk← (g,Q,G1,GT ,Hk, ê).

ASign. The algorithm ASign outputs the signature σi on input of the secret key
sk and a single string mi ∈ {0, 1}∗: σi ← (Hk(mi))

sk.

AVerf. To verify a signature σi, check, if the following equation holds: ê(σi, g)
?
=

ê(Hk(mi), Q).

AAgg. To aggregate ` signatures σi into an aggregated signature σc, the aggre-
gator computes σc ←

∏`
i=1 σi, denoted as AAgg(pk,S), where S is the set of

` signatures signed using the same public parameters contained in pk. This
can be done by untrusted parties and without knowing the private key.

AAggVerf. To verify an aggregated signature σc, check whether ê(σ, g)
?
=∏`

i=1 ê(Hk(mi), Q) holds, on input of σc, pk and a list of all signed mi.

To improve efficiency, the right side can be rewritten as ê(
∏`
i=1Hk(mi), Q),

due to the use of only one public key. We denote the algorithm as d ←
AAggVerf(pk, σ, {mi}0<i≤`).

The usual correctness requirements must hold, which have been formally proven
in [4]. Moreover, we require the expected security properties to hold, i.e., unforge-
ability under chosen message attacks and the k-element extraction assumption.
The proofs and formal definitions can also be found in [4].



2.2 The Scheme by Kundu and Bertino

In this section, we shortly restate the scheme by Kundu and Bertino. Afterwards,
we describe the attacks. We use the following notations: n denotes the number of
nodes (i.e., |V |); a node i is denoted as ni; ci denotes the label or named content of
ni. A family of cryptographic hash-functions is denoted as HS , where S denotes
the key space of the hash function family. The following algorithm is the original
one introduced in [12]. In their scheme, the input flags r and i are both fixed to 1.
This indicates, that both, root and non-leaf node redaction, is always allowed. If
nodes have to be ordered, we assume that the ordering algorithm used is known
to every party involved. In particular, one could use pre-order traversal. “||”
denotes a concatenation which must be uniquely reversible.

Construction 1 (The Kundu-Scheme) The scheme by Kundu and Bertino
KS consists of four efficient algorithms. In particular KS := (KeyGen,TSign,TVerify,TShare).

KeyGen. The key generation algorithm (sk,pk) ← KeyGen(1λ) outputs a key
pair of an aggregate signature scheme: output (sk,pk)← AGG.AKeyGen(1λ)

TSign. The signing algorithm (T, σT ) ← TSign(sk, T, r, i) takes the secret key
sk and the tree T to sign. To do so, it performs the following steps:

1. Choose a cryptographic hash-function Hs ∈ HS
2. Get the pre-order traversal numbers of each node ni ∈ T , denoted li

3. Get the post-order traversal numbers of each node ni ∈ T , denoted ri

4. Apply the randomizing, but order-preserving function θ to both lists of
traversal numbers, using some distribution ∆. The randomized counter-
parts is denoted as lri resp. rri . How to calculate this randomization step
is not important; the required order-preserving behaviour is enough to
undermine transparency and privacy (See Sect. 2.3)

5. Let ρi := (lri , r
r
i ). Set GT ← Hs(ρ1||c1|| . . . ||ρn||cn)

6. For 1 < i ≤ n, compute σi ← AGG.ASign(sk,Hs(GT ||ρi||ci))

7. Compress all resulting signatures σi into a compressed signature σc, i.e.
σc ← AGG.AAgg(pk, {σi}0<i≤n).

8. Output (T, σT ), where σT = (pk, σc, GT , s, {(σi, ρi)}0<i≤n)

TVerify. The algorithm TVerify(T, pk, σT ) takes as input the received tree T , a
public key pk and the received signature σT . It outputs a bit d ∈ {0, 1}, which
indicates, if the received σT is a valid and correct signature on T under the
public key pk. It performs the following steps to do so:

1. Compute d← AGG.AAggVerf(pk, σc, {Hs(GT ||ρi||ci)}0<i≤n).
If d = 0, output 0, else continue

2. Check, if each node is positioned correctly using both traversal numbers
derived from ρi. If the positions are correct, output 1, else output 0
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TShare. The algorithm TShare(T, pk, σT ,N ) takes as input a tree T , a public
key pk and the tree’s signature σT , as well as a subset N ⊆ T of nodes

1. Check the validity of σT using TVerify

2. Set T ′ ← T \ N , and also remove the edge(s). If non-leaf nodes are
subject to redaction, implicit edges are introduced: the redacted node is
skipped in terms of the edge. See Sect. 2.4 for more details

3. Compute σ′c ← AGG.AAgg(pk, {σi}0<i≤n′), where n′ = |V ′|. Note, we
have rearranged the indices to account for the redaction

4. Output (T ′, σ′T ), where σ′T = (pk, σ′c, GT , s, {(σi, ρi)}0<i≤n′)

2.3 Attacks on Kundu’s Transparency and Privacy

Transparency and privacy can actually be attacked in many ways. We go through
all known attacks. Some attacks can just be mounted on special revisions of the
schemes by Kundu and Bertino. We state this for each attack. For the sake of
completeness and to have a complete list of attacks against the new scheme is
shown to be resilient, we restate all attacks known yet as well.

Randomized Traversal Numbers. The following attack has been discovered
by Brzuska et al. in [5]: Kundu and Bertino propose three ways to randomize
the traversal numbers: [13]

Sorted Random Numbers: Generate |V | random numbers and sort them.

Order-Preserving Encryption: Apply an order-preserving encryption scheme, e.g. [1], to the traversal num-
bers.

Addition of Random Numbers: Assign the numbers to the nodes by taking the previous traversal number
and adding a random offset.



Consider a tree with three nodes, i.e., the tree as depicted in Fig. 5. The algorithm
θ outputs a tuple (rl, rr, r0)← θ(T,∆) on input of the depicted tree T in Fig. 5
and a distribution ∆. Assume that ∆ is the uniform distribution and let µ =
E(rl) be the expected random number associated to nr. Furthermore, assume
that Pr[rl = µ] = 0 for a sufficiently large space. Hence, the probabilities are
Pr[rl < µ] = Pr[rl > µ] = 0.5. Therefore, we obtain Pr[rr > µ] ≥ 0.75, since rr is
the largest random number and for rr < µ, both rl and r0 must be smaller than µ.
Transparency can then be broken for the sample tree depicted in Fig. 5 as follows:
transparency has been defined as a game where the adversary must guess a bit
b. The game either returns a signature just containing n0 and nr or a signature
which represents the whole tree where nl has been cut off [5]. To win the game,
the adversary just outputs 1, if rr ≤ µ and 0 otherwise. Note: Pr[rr > µ] ≥ 0.75
for a sanitized tree, while for a freshly signed one the probability changes: Pr[rr >
µ] = 0.5. Hence, b can be guessed with a non-negligible probability. Therefore,
the scheme by Kundu and Bertino is neither transparent [5] nor private, since the
leaked information allows to make statements about the original message. This
attack works for other distributions as well, while it is required that the adversary
knows the distribution ∆, which can be derived from the signing algorithm.

Leaking Structural Signature GT . In the original paper [12], Kundu and
Bertino introduce an additional digest which they name “structural signature”,
denoted as GT . This “signature” is calculated as GT ← Hs(ρ1||c1|| . . . ||ρn||cn).
It is part of the calculation of each σi, i.e., σi ← AGG.ASign(sk, GT ||ρi||ci).
Obviously, to check the signature σT , GT needs to be available to the verifier.
The verifier can calculate a digestG′T on input of the tree T ′. In particular,G′T ←
Hs(ρ1||c1|| . . . ||ρn′ ||cn′), where n′ = |V ′|. Afterwards, the following equation is

checked: G′T
?
= GT . Following our definitions, this also destroys privacy. This

problem has partially been circumvented in [13] by salting GT ; in particular the
signer calculates: GT ← Hs(ω||ρ1||c1|| . . . ||ρn||cn), where ω is a nonce. However,
this choice requires that Hs is modeled as a random oracle to ensure privacy [13].
In the revision introduced in [16], no structural signature is present, thus not
inheriting this problem. However, omitting the tag renders that revision of the
scheme forgeable, as we see next.

2.4 Attacks on Kundu’s Unforgeability and Structural Integrity

Besides the attacks on transparency and privacy, unforgeability can be attacked
as well. In this section, two attacks are given; one is adapted from [20], while
the second one is an additional contribution.

Level Promotion. We restate the observation which has recently been discov-
ered by Samelin et al. in [20]. They show how to alter the semantic meaning of



tree T by removing nodes which are not leafs. They name non-leafs “intermedi-
ate nodes”. We adapt their nomenclature. Removing intermediate nodes allows
introducing new implicit edges in certain scenarios. A sample tree, where this
is possible, is depicted in Fig. 6. For this tree the traversal numbers are (1, 2, 3)
(pre-order) resp. (3, 2, 1) (post-order). The randomization step can be omitted
due to the order-preserving behaviour. If n1 gets redacted, the traversal numbers
of the remaining nodes are (1, 3) (pre-order) resp (3, 1), which, in terms of the
signature, is valid. In particular, a sanitizer can introduce an edge en0,n2

/∈ E
which has not been signed by the signer. In general, this contradicts integrity
and therefore destroys unforgeability. Furthermore, this attack is possible in all
versions of the schemes by Kundu and Bertino [12, 13, 16]. One might argue, that
it depends on the definition of integrity, if this behavior can be considered as
an attack. However, we think that such powerful possibilities must be under the
sole control of the signer to avoid unwanted side-effects. This is in accordance
with [20]. Our secured scheme allows such a level-promotion, but only after the
signer explicitly allowed this behaviour during generation of the signature. Note,
additionally the attack from [20] is also applicable, if one is able to redact par-
ent nodes to allow distributing subtrees of a given tree. In our example, this
would be the tree T ′ = ({n1, n2}, {e1,2}). Obviously, this also leads to the same
problem. This has not been mentioned in [20]. One may argue that intermediate
node redaction lacks application scenarios. This is not true. Consider the fol-
lowing example: a tree’s structure is implicitly describing the hierarchy within
a company. Allowing to remove intermediate nodes now permits only to remove
the department head. This leaves a list of employees. Without intermediate node
redaction, this is not possible. Hence, there exist use cases, where removing leafs
only is not sufficient.

Match-and-Mix Attacks. In the older revisions of the schemes by Kundu and
Bertino, i.e., as proposed in [12, 13], each node nGT

x is bound to the tree TGT

due to the structural signature GT , which is part of each signature. Hence, a
node nGT

x cannot be merged into another tree TG
′
T , which nodes nG

′
T have been

signed with a different tag G′T . However, in the newest revision [16], this tag
is not present anymore; it is just aggregated onto the signature but does not
bind nodes to the tag, since it is not bound to each node signed. In particular,
σi ← AGG.ASign(sk, GT ||ρi||ci), where GT := ∅. Hence, an adversary A can
merge nodes of different trees into a new tree TA, which contains nodes orig-
inally signed for TG

′
T and TGT . As an example, we show how the tree TA, as

depicted in Fig. 7, can be constructed. W.l.o.g. let ρ
n
GT
0

= (1, 3), ρ
n
GT
1

= (2, 2)

be the nodes of tree TGT and ρ
n
G′

T
x

= (3, 1) be the only node of TG
′
T . The

adversary A has access to each of the individual signatures σn0
, σn1

, σnx
and

the “blinding signatures” σωT
and σω′T .1 Hence, it can construct a signature σA

on the tree TA by calculating σA ← AGG.AAgg(pk, {σn0
, σn1

, σnx
, σωT

}) resp.

1 An adversary can always build an inverse of all signatures received.



σ′A ← AGG.AAgg(pk, {σn0
, σn1

, σnx
, σω′T }), where TA consists of all three nodes

mentioned. Running TVerify(TA, pk, σA) outputs the bit 1. As a result, the at-
tacker has successfully forged a signature for TA. This new attack can be applied
as soon as two trees are signed with the same private key. Hence, the newest
revision of the scheme by Kundu and Bertino is forgeable. Again, the older re-
visions do not have this problem, as every node nGT

x is bound to the tree TGT

due to GT , which is unique for each tree signed. We conclude, that all revisions,
i.e. [12, 13, 16], are not secure in our model.

3 Our New Secure Construction

We present a construction based on Kundu and Bertino’s ideas, but without
inheriting the previously mentioned weaknesses. We use a transparent and un-
forgeable RSS for standard linear documents, which is denoted as Π in this
section. In particular, let Π = (KeyGen,Sign,Redact,Verify) be a secure RSS for
lists. Moreover, we require transparency, privacy and unforgeability. Please refer
to [5, 8, 20] for the formal definitions. The existing secure schemes have a runtime
of O(n2) or O(n · log(n)) resp. [2], whereas the latter just allows quoting of sub-
strings, hence not suitable for arbitrary redactions. Their scheme fulfills a strong
privacy notation, strong context-hiding. We are aware of the fact that Kundu
et al. introduced a new scheme in [14]. However, their new scheme also has a
worst case complexity of O(n2), only allows to remove leafs and therefore offers
no advantage to the one introduced in [5] by Brzuska et al. Additionally, [14]
relies on a different idea, based on signing binary relations, similar to [5, 8, 20].
Hence, we see their scheme as a completely new construction not related to the
original idea. Our scheme makes use of a RSS for lists. Utilizing a RSS in O(n),
our new scheme is considerably faster than the existing ones. Such a RSS has
been proposed by Pöhls et al. in [19].

Sketch of our Secure Construction. We first sketch our construction to
increase readability of the algorithmic descriptions. The basic idea is to use
the fact that a tree is uniquely determined by its pre- and postorder traversal
numbers. However, as Brzuska et al. show in [5], ordering random numbers leads
to insecure schemes. Hence, we need to find a way to sign the ordering of the
traversal numbers without explicitly ordering them. We achieve this by using a
secure transparent RSS, which protects the order of the signed parts. We use this
order preserving RSS to sign two lists. Each list contains uniformly distributed
random nonces, which are pairwise unique. Let i denote the traversal number of
a node n. We annotate ni with the nonce at the ith position in the list to store
the node’s traversal number. We use one list for pre- and another for post-order
traversal numbers. The ordering of each list secured by signing it with the RSS.
Note, the lists itself are not ordered. When a node ni is redacted, the two nonces
used to annotate ni are removed from the respective list using the RSS, while



leaving each list of remaining nonces still uniformly distributed. Additionally,
the signer can decide, if a redaction of the root or redaction of intermediate
nodes is allowed, as the signer annotates the nodes accordingly. This keeps the
signer in control, while giving more flexibility. This must be done by annotating
nodes accordingly. We cannot use the content of the nodes, as they may not be
unique, making the reconstruction ambiguous and therefore forgeable.

Construction 2 (The New Flexible Construction) We give an algorith-
mic explanation of our scheme. The security proofs can be found in the appen-
dices, but from the algorithmic description the new scheme’s resilience against
the mentioned attacks are visible. The aggregate signature is used to improve
the performance of the verification process and to achieve consecutive redaction
control, as we show in Sect. 4.1.

KeyGen. The key generation algorithm outputs two key pairs: (1) A key pair for
an aggregate signature scheme AGG, i.e. (skAGG , pkAGG)← AGG.AKeyGen(1λ).
(2) A key pair for Π, i.e. (skΠ , pkΠ)← Π.KeyGen(1λ).

TSign. The signing algorithm (T, σT ) ← TSign(sk, T, r, i) takes all secret keys
and the tree T to sign. To do so, it performs the following steps:

1. Generate two lists, L and M, each contains n = |V | pairwise distinct
uniformly distributed random numbers ∈ {0, 1}λ. The elements of the
list is addressed by an index, e.g., Li

2. Traverse the tree via pre-order and set ci ← Li||ci

3. Traverse the tree via post-order and set cj ←Mj ||cj

4. Choose a random tag τ
$← {0, 1}λ, which must be unique for each tree T

5. If r = 0, set τ ← τ ||noroot and annotate the root: cr ← cr||theroot.
Otherwise, set τ ← τ ||root. Sign τ : στ ← AGG.ASign(skAGG , τ)

6. Draw a nonce d, d
$← {0, 1}λ. For each node ni: if i = 0, set ci ←

(ci||d+depth(ni)), otherwise ci ← (ci||−1). The function depth : V → N
returns the distance from the root to the given node ni ∈ T

7. For each node ni sign ci||τ : σi ← AGG.ASign(skAGG , ci||τ)

8. Compress all resulting signatures into the signature σc, along with the
signature of τ , i.e. σc ← AGG.AAgg(pkAGG , στ ∪ {σi}0<i≤n)

9. Sign L using Π, i.e., (L, σL)← Π.Sign(skΠ ,L)

10. Sign M using Π, i.e., (M, σM)← Π.Sign(skΠ ,M)

11. Output (T, σT ), where σT = (σc, (σi)0<i≤n, στ ,L,M, σL, σM,pkAGG ,pkΠ , τ)

TVerify. Verifying the signature is similar to generating the signature.

1. Check the validity of σL/L and σM/M using Π.Verify



2. For each node ni ∈ T , parse ci as (mi, li, ei, di)

3. Traverse T via pre-order: ∀ni ∈ T , check if Li = li. If not, abort and
return 0

4. Traverse T via post-order: ∀nj ∈ T , check if Mi = mi. If not, abort and
return 0

5. Compute v ← AGG.AAggVerf(pk, σT , {τ} ∪ {mi||li||ei||di||τ}0<i≤n). If
v = 0, abort and return 0

6. Let r denote the root of the tree T . If dr 6= −1, check for all nodes
ni ∈ T \ r, if depth(parent(ni) = di − 1), where parent : V → V returns
the only parent of a given node ni. If not, abort and return 0

7. Parse τ as (τ, h). If h = noroot, r shall be the root of the tree T . Parse
cr as (c′r, p). If p 6= theroot return 0, otherwise return 1

TShare. The algorithm TShare(T, pk, σT ,N ) takes as input the tree T , all public
keys pk and the signature σT , as well as a set of nodes N ⊆ T .

1. Remove nodes by setting T ′ ← T \ N

2. If intermediate nodes have been redacted, adjust the edges of the inter-
mediate nodes’ successors. In particular, for each node ni ∈ T ′ \ r not
having a parent, introduce the edge ei,j, where nj is the closest ancestor
node not redacted. If the result is not a tree, return ⊥

3. For each ni ∈ N , adjust both lists of nonces: σ′L ← Π.Redact(pkΠ ,L, i),
where i is the pre-order number of ni. And σ′M ← Π.Redact(pkΠ ,M, j),
where j is the post-order number of ni

4. Set σ′c ← AGG.AAgg(pkAGG , στ ∪ {σi}0<i≤n′})

5. Construct (T ′, σ′T ), where σ′T = (σ′c, (σi)0<i≤n′ , στ ,L′,M′, σ′L, σ′M,pkAGG ,pkΠ , τ)

6. Verify σT : If TVerify(T ′,pk, σ′T ) outputs 0, abort and return ⊥

7. Output (T ′, σ′T )

3.1 Security and Correctness

Theorem 1 (The Construction is Correct and Secure). Our construction
is secure and correct.

Proof. Relegated to App. 6.



3.2 Complexity Analysis

For signing our scheme requires O(n) steps. Each step “involves” each node
ni ∈ T four times: we assign two random values and we generate two digests.
Afterwards, all digests are compressed using AGG, while L and M are signed
using a order preserving secure RSSΠ. We assume that drawing nonces is inO(λ)
and therefore constant. We will leave this as future work. The steps performed
by Π are not considered in this approximation, as they depend on the actual
RSS used, which can be exchanged. Verification “involves” each node in two
operations to calculate the digest. Hence, verification is also in O(n). However,
to verify the random values, Π.Verify is called twice. This is also the case during
redaction: we simply delete the nodes, while redacting the random values from
L and M involves two invocations of Π again. Hence, the asymptotic runtime
depends on Π, while being at least in O(n).

4 Modifications to Our Scheme

4.1 Consecutive Redaction Control

To prohibit redaction of several nodes, the ideas introduced in [17] by Miyazaki
et al. can be applied. Depending on the AGG used, it is possible to remove a
signature from the compressed one. In particular, the BGLS -Scheme [4] allows
such calculations due to its group-theoretic structure. Hence, to prohibit redac-
tion, the signatures for these nodes are not delivered to the sanitizer. To do so,
στ must not be delivered. Additional proofs and a more detailed discussion can
be found in [17] and [20].

4.2 Restricting to Sanitizers and Accountability

All proposed schemes allow everybody to redact nodes. To limit redaction to
explicitly denoted sanitizers the signature σT is extended to hold an additional
value d. Let d ← SIGN(sk, τ ||CH(〈T 〉)), where 〈T 〉 is a suitable binary repre-
sentation of the signed tree T and CH is a chameleon hash. The values required
for CH need to be delivered with σT . Hence, only sanitizers who possess the se-
cret for CH can alter T without invalidating the signature. This can be enriched
further to achieve sanitizer and signer accountability [6]: CH could be replaced
with a tag-based chameleon-hash CHTAG, i.e., the construction of Brzuska et
al. [6].

5 Implementations and Performance Analysis

We have implemented the scheme by Kundu and Bertino in the original ver-
sion [12] and the scheme by Brzuska et al. [5]. We did not implement our scheme,



Generate σT Verify σT

@
@@n
h

10 50 100 10 50 100

2 721 14,319 55,625 24 525 1,910

3 6,856 -slow- -slow- 241 -slow- -slow-
Table 1. Brzuska et al.: Low Branching Factor
n; Median Runtime in ms

Generate σT Verify σT

@
@@n
h

10 50 100 10 50 100

2 544 2,247 5,293 5 8 10

3 4,319 106,694 369,854 8 165 319
Table 2. Kundu and Bertino: Low Branch-
ing Factor n; Median Runtime in ms

Generate σT Verify σT

@
@@n
h

2 3 4 2 3 4

5 605 2,804 9,607 19 95 333

10 17,195 666,530 -slow- 614 18,838 -slow-
Table 3. Brzuska et al.: High Branching
Factor n; Median Runtime in ms

Generate σT Verify σT

@
@@n
h

2 3 4 2 3 4

5 1,657 5,065 14,132 4 12 22

10 44,756 1,228,738 -slow- 111 864 -slow-
Table 4. Kundu and Bertino: High branching
factor n; Median Runtime in ms

since it only differs by a constant factor from the scheme by Kundu and Bertino
in the original version [12], i.e., the underlying RSS Π. The source code used
for this evaluation will be made available on request. The tests were performed
on a Lenovo Thinkpad T61 with an Intel T8300 Dual Core @2.40 Ghz and
4 GiB of RAM. We ran Ubuntu Version 10.04 LTS (64 Bit) and Java version
1.6.0 26-b03. We used 2048-Bit RSA-Keys. The trees signed are n-ary bal-
anced ones with height h. Tab. 1 and 2 show the results for high trees with a
low branching factors. Tab. 3 and 4 show the results for flat trees with a high
branching factor. This gives a good impression for different use cases and allows
determine the specific pros and cons of the schemes.

As shown in the Tables 1-4, all schemes have a comparable runtime for small
trees. For binary and ternary trees of increasing depth the scheme by Brzuska et
al. suffers from the quadratic runtime and becomes unusable, denoted by “-slow-
”, very fast. Measuring was aborted, if the runtime was greater than 20 minutes.
We conclude, that a linear complexity is required to yield useable schemes, as
waiting a few minutes to generate σT is not acceptable, even if signatures are
normally more often verified than generated.

6 Conclusion and Open Questions

After several new attacks presented in this paper, the scheme by Kundu and
Bertino has been found to be insecure with respect to all RSS security properties.
Building on the fact that removing an element from a uniformly distributed list
of random numbers preserves their distribution and a secure order preserving
transparent RSS, the new construction given in this paper can reuse the idea of
Kundu and Bertino that a node’s position in a tree is specifiable only by his post-
and pre-order traversal numbers. Moreover, our scheme is the first which allows
that the signer can decide, if it is allowed to redact parent or intermediate nodes.
This makes the new construction secure against the existing attacks against the



scheme by Kundu and Bertino as given by Brzuska et al. [5] and Samelin et
al. in [20], as well as the two new attacks described in this paper. The paper
offers formal proofs of the new construction’s security and correctness. While all
existing secure schemes have a runtime overhead of O(n2), our new construction
has only an overhead of O(n), if the underlying order-preserving RSS is in O(n).
The work demonstrates that the underlying idea of using traversal numbers
to transparently redact nodes combined with a order-preserving RSS can be
facilitated to build a simplistic and enhanceable redactable scheme, which is
provably secure in terms of transparency, privacy and unforgeability, while being
highly efficient and very flexible.
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Theorem 2 (The Construction is Transparent). Our construction is trans-
parent and therefore also private [5].

Proof. L, M, the public keys pkAGG and pkΠ and the tag τ do not leak any
information about the tree T . The lists L and M contain uniformly distributed
random numbers. Even on redaction of a tree node, we only remove elements
from a uniformly distributed list of randoms, which still results in a uniformly
distributed list of randoms. If the tree is annotated with d, nothing can be
derived either, since d is chosen from a uniform distribution and the tree grows
at most linearly in |V |. Hence, we only need to show that σL/M and σc together
imply transparency. A successful attack on transparency would show that either
Π and/or the aggregate signature scheme AGG is not transparent. To avoid
duplicate work, we relegate the reader to [17] and [20], where the proofs for
transparency of σc can be found. For σL/M, we show how an adversary would also
break the transparency of the underlying RSS Π: Assume an efficient adversary
Atra which wins the transparency game of our scheme. Using Atra we construct
another adversary Btra to break the transparency of Π in the following way:
For any calls to OTSign resp. OAdapt/Sign, Btra genuinely returns the answers of
its own oracle. Eventually, Atra outputs its guess b∗. b∗ is then outputted by
Atra as its own guess. We now need to argue that, due to the fact that AGG



is information-theoretically transparent, Btra’s probability of success equals the
one of Atra. Only Π could have leaked this information, as the lists contain just
uniformly distributed nonces and redactions of elements in that list again lead
to a uniformly distributed list. Hence, Btra wins with the same probability as
Atra.

Theorem 3 (The Construction is Unforgeable). Our construction is un-
forgeable.

Proof. We assume that no tag-collisions occur, winning the unforgeability game
in a trivial manner. Note, that we do not need an induction over the tree, as
we transform it into two lists, which are uniquely determined. Let the algorithm
winning the unforgeability game be denoted as A. Our scheme’s security relies
upon the security of AGG and Π. Given the game in Fig. 1, we can derive that
a forgery must fall in at least one of the following cases:

Case 1: A value protected by σc has never been signed by the oracle

Case 2: The value protected by σc has been signed, but T ∗ 6⊆ span`(T ). In other
words: The tree T ∗ protected by σT is not in the transitive closure of any
tree for which a signature was queried. This case has to be divided as well:

Case 2a: T /∈ span`(T
∗)

Case 2b: T ∈ span`(T
∗)

We can construct an adversary B with breaks the unforgeability of the BGLS-
Scheme, if an adversary A with a non-negligible advantage ε exists, winning
our unforgeability game. To do so, B uses A as a black box. For every sig-
nature query A requests, B forwards the queries to its signing oracle OTSign
and genuinely returns the answers to A. Eventually, A outputs (T ∗, σ∗T ), where
T ∗ = (σ∗c , {σi}0<i≤n∗ , σ∗τ ,L∗,M∗, σ∗L, σ∗M, pk∗AGG , pkΠ , τ

∗). Given the transcript
of the simulation, B checks, if the outputted tuple is a trivial “forgery”, i.e.,
just an allowed redaction. If so, B aborts the simulation. If B does not abort,
we have to consider the following constellations: If σ∗c contains messages never
signed, B outputs (σ∗c ) along with forged strings, which can easily be extracted.
If T /∈ span`(T

∗), we have to consider two cases: (1) the values protected by σL
resp. σM have been altered or (2) the strings protected by σT were modified. In
either case, this allows to break the unforgeability of either Π or AGG. The cor-
responding forgeries can easily be extracted. If T ∈ span`(T

∗), both Π and AGG
must have been forged, since new elements are now contained in the aggregate
or the RSS. As before, the forgeries can be extracted given the transcript.




