
Reliable Protection Against Session Fixation Attacks

Martin Johns
SAP Research

martin.johns@sap.com

Bastian Braun
ISL, University of Passau

bb@sec.uni-passau.de

Michael Schrank
ISL, University of Passau
mschrank@gmx.net

Joachim Posegga
ISL, University of Passau

jp@sec.uni-passau.de

ABSTRACT
The term ‘Session Fixation vulnerability’ subsumes issues
in Web applications that under certain circumstances enable
the adversary to perform a Session Hijacking attack through
controlling the victim’s session identifier value. A successful
attack allows the attacker to fully impersonate the victim
towards the vulnerable Web application. We analyse the
vulnerability pattern and identify its root cause in the sep-
aration of concerns between the application logic, which is
responsible for the authentication processes, and the frame-
work support, which handles the task of session tracking.
Based on this result, we present and discuss three distinct
server-side measures for mitigating Session Fixation vulner-
abilities. Each of our countermeasures is tailored to suit a
specific real-life scenario that might be encountered by the
operator of a vulnerable Web application.

1. INTRODUCTION
Session Fixation has been known for several years [12].

However, compared to vulnerability classes such as Cross-
site Scripting (XSS), SQL Injection, or Cross-site Request
Forgery (CSRF), this vulnerability class has received rather
little attention even though the impact ranges on the same
level. Session Fixation is a widespread problem due to the
low attention it receives and its ‘occurence by default’ in
new Web applications (see Sec. 2 for details). Prevention is
easy during development but fixing vulnerable applications
is generally non-trivial.

Our contribution is twofold: For one, we provide an ap-
proach for transparent, light-weight protection on the frame-
work level. It allows ‘patching’ Web applications without
access to the code but just to the underlying framework.
Furthermore, we developed a proxy based solution that im-
plements Session Fixation protection with neither access to
the application code nor to the framework. In addition, we
explain Session Fixation prevention at development phase
and, thus, provide comprehensive protection against Session
Fixation vulnerabilities.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’11 March 21-25, 2011, TaiChung, Taiwan.
Copyright 2011 ACM 978-1-4503-0113-8/11/03 ...$10.00.

Paper outline: The remainder of this paper is organised
as follows: We present the context of the vulnerability in
Section 2. We explain the technical background and the
circumstances that lead to Session Fixation vulnerabilities
as well as attack vectors. Then, we present our server-side
approach to counter the vulnerability (Sec. 3). We show
how the vulnerability can be prevented on code-level during
development phase. We developed two solutions that fix
the vulnerability on framework-level and application-level
respectively. After exploring related (Sec. 4) and future work
(Sec. 5), we finish the paper with a conclusion (Sec. 6).

2. SESSION FIXATION
In this section, we give a thorough insight into Session

Fixation. We first describe how session management is done
in current Web applications. Then, we sketch a simple Ses-
sion Fixation attack to shed light on the general attack pro-
cess. The underlying deficiencies that lead to Session Fixa-
tion vulnerabilities are discussed before more sophisticated
attack vectors are presented. Finally, the Session Fixation
vulnerability is discussed in the context of its more general,
enclosing vulnerability type, the class of Session Hijacking
vulnerabilities.

2.1 Technical background
HTTP is a stateless protocol. Past transactions are not

protocol inherently linked to incoming requests. Thus,
HTTP has no protocol level session concept. However, the
introduction of dynamic Web applications resulted in work-
flows which consist in a series of consecutive HTTP requests.
Hence, the need for chaining HTTP requests from the same
user into usage sessions arose. For this purpose, session iden-
tifiers (SID) were introduced. A SID is an alphanumerical
value which is unique for the corresponding Web session.
A SID mechanism can be implemented by transporting the
value either in form of an HTTP cookie or via HTTP pa-
rameters [6]. All modern Web application frameworks or
application servers, such as PHP or J2EE, implement appli-
cation transparent SID management out of the box.

It is common practice in modern Web applications to link
a user’s authentication and authorization state to his current
session. In consequence, the SID value becomes the user’s
de facto authentication credential.

2.2 Session Fixation - The attack
Session Fixation is an attack in which the victim is tricked

into using a SID value that is controlled, and thus known,

Figure 1: Exemplified Session Fixation attack [12]

by the attacker. This can be achieved either by supplying
a crafted URL including this SID as a parameter to the
victim (in case that the vulnerable Web application accepts
parameter-based SIDs) or by finding a way to set a copy of
this SID cookie to the victim’s browser (more on this attack
vector in Sec. 2.4).

See Fig. 1 for a brief example of the attack via a crafted
URL. The individual steps of the attack are the following:

1. The attacker obtains a SID value from the server (1,2).

2. He tricks the victim to issue an HTTP request using
this SID during the authentication process (3,4).

3. The server receives a request that already contains a
SID. Consequently, it uses this SID value for all further
interaction with the user and along with the user’s
authorization state (5).

4. Now, the attacker can use the SID to access otherwise
restricted resources utilizing the victim’s authorization
context (6).

In Section 2.5, we discuss the relationship between Session
Fixation and similar attacks, such as Session Hijacking through
Cross-site Scripting.

2.3 Why does Session Fixation exist?
At first glance, the Session Fixation attack pattern seems

both contrived and unlikely. Why would an application ac-
cept a user’s SID that was not assigned by the application
to this user in the first place? The root problem lies within
a mismatch of responsibilities: SID management is executed
by the utilized programming framework or the application
server. All related tasks, such as SID generation, verifi-
cation, communication, or mapping between SID values to
session storage, are all handled transparently to the appli-
cation. The programmer does not need to code any of these
tasks manually. However, the act of authenticating a user
and subsequently adding authorization information to his
session data is an integral component of the application’s
logic. Consequently, it is the programmer’s duty to imple-
ment the corresponding processes. The framework has no
knowledge about the utilized authentication scheme or the
employed authorization roles.

Finally, in general, modern Web application frameworks
assign SID values automatically with the very first HTTP
response that is sent to a user. This is done to track appli-
cation usage even before any authentication processes have
been executed, e.g., while the user accesses the public part
of the application. Often the programmer is not aware of
this underlying framework level SID functionality as he is

not responsible for managing the SIDs. He simply relies on
the framework provided automatism.

The combination of the circumstances listed above lead
to situations in which applications neglect to reissue SID
values after a user’s authorization state has changed. This
in turn, causes Session Fixation vulnerabilities: As the SID
remains unchanged, any initial SID value which was fixed
by the attacker stays “valid” and, thus, can be abused.

2.4 Exploiting Session Fixation
For our considerations of attack vectors, we assume an ad-

versary who has the same capabilities as any other external
Web user. The adversary can access Web sites, send E-mails
and instant messages. He is able to control all data that re-
sides in his domain. However, he is supposed to be unable
to access Web resources or change application states that
cannot be accessed or changed by any other unpriviledged
user.

As mentioned above, the attacker could try to provide
the SID value to the victim through a crafted URL, in case
the application accepts session identifiers in GET parame-
ters. However, as current Web applications only very sel-
dom still allow SIDs in URLs [18], a realistic attack scenario
would very likely require the adversary to illegitimately set
a cookie. We could identify several ways to set a cookie at
the victim’s site [18]:

For one, the adversary can use Cross-site Scripting (XSS)
to set a cookie at his victim’s site if the Web application is
vulnerable to this attack. In this case, he inserts appropri-
ate JavaScript code into a web page in the same domain,
using the cookie.write() function. Under certain circum-
stances, a Web application might allow user-provided HTML
markup but filters user-provided JavaScript. In such cases,
the attacker might be able to inject special <meta http-

equiv="Set-Cookie"> tags. Unlike a cookie stealing attack,
e.g. for Session Hijacking, the victim does not have to be
logged in, thus, the attack also works at the public part of
the application. The attacker can also target a Web page
in a vulnerable subdomain to insert his payload. Then, the
cookie is valid for the whole domain.

Furthermore, cross-protocol attacks [22, 4] could be uti-
lized. Such attacks allow the adversary to create XSS-like
situations via exploiting non-HTTP servers, such as SMTP
or FTP, that are hosted on the same domain. Such at-
tacks cannot be used for most XSS-based attack vectors, as
JavaScript’s same-origin policy [17] explicitly includes the
port value of a given URL as a mandatory component when
determining a component’s origin and the vulnerable ser-
vices run on non-HTTP ports. However HTTP cookies are
shared across ports [13]. Thus, cross-protocol attacks can be
utilized to set long-lived session cookies as outlined above.

Alternatively, the attacker could attempt a HTTP Header
Injection attack [11]. If the targeted Web application is vul-
nerable to such attacks, this enables the attacker to control
parts of the HTTP response header that is retrieved by the
user. This in turn allows the attacker to craft a Set-Cookie-
header which contains the fixed SID value.

Finally, in the past, we saw browser vulnerabilities that
allowed the attacker to set the cookie from a foreign do-
main [23].

Besides finding an enabling vulnerability, the attacker faces
additional obstacles. He has to lure the victim into logging
in his account and has a window of opportunity of unknown

and limited duration. The attacker can bypass the latter by
automating his access attempts. Nonetheless, a successful
attack allows the attacker to fully impersonate the victim
while it is generally not obvious to the victim to be under
attack, especially if he is not familiar with Session Fixation.

2.5 Session Fixation - Context
An HTTP session can be considered as the abstraction of a

dedicated communication channel between client and server.
Only the knowledge of the communication channel’s name
(SID) is needed to access this channel. Hence, knowing the
SID enables the adversary to conduct a Session Hijacking
attack.

To address this problem, additional measures, such as
browser recognition (which can be trivially circumvented)
or IP binding, have been proposed. Though these measures
raise the bar they can not finally solve the problem. Instead,
they bring new problems under certain circumstances. For
instance, IP binding makes a service unusable if accessed
from anonymity networks that tend to send packages from
changing IP addresses. A mobile device switching from 3G
network to wireless LAN at home gets a new address and
looses the current session with unsaved data. Network Ad-
dress Translation (NAT) is used in company as well as uni-
versity networks. All requests from the same network appear
to come from the same address and thus eliminate IP bind-
ing protection. That is why we disregard such additional
security measures for the remainder of this paper unless any
measure plays a decisive role.

As conventional man-in-the-middle attacks have stopped
being the easiest hijacking attack due to switched networks
and SSL secured channels, attackers now target the com-
munication’s end points. Especially Session Hijacking via
Cross-site Scripting (XSS) [5] has become a considerable
threat.

The Session Fixation attack is similar to the Session Hi-
jacking attack via XSS in that it needs a vulnerability to
prepare the attack. Like the XSS vulnerability allows the
attacker to steal the SID, i.e. to gain knowledge of the
communication channel’s name, the Session Fixation attack
needs a preceding attack to determine the victim’s SID be-
fore connection establishment to the Web application. So,
the attacker sets up a new session and receives a SID. Next,
he makes the victim use the same SID. Thus, he transfers the
communication channel’s end point to the victim. Finally,
the attacker can take over the victim’s session after the lat-
ter authenticates himself against the application. Thus, the
attacker uses the authenticated communication channel ad-
dressed by the well-known SID without ever authenticating
himself.

The main reason for the Session Fixation vulnerability
lies in the missing renaming of the communication channel
after authentication. The SID is not security-critical data
before authentication as the user is still unknown and nei-
ther the user nor the channel are trustworthy. However, af-
ter the authentication process has been passed successfully,
the same communication channel with the same name has
become trusted and security-critical. The same data must
turn from untrustworthy to trusted as the Web application
must rely on the opponent’s identity. So, only the autho-
rized client is supposed to know the ‘ticket’ to the established
communication channel. This can be easily guaranteed by
renewing the SID after every authorization raise, e.g. from

unauthenticated user to an authenticated user but also from
unpriviledged user to administrator.

3. SERVER-SIDE MEASURES AGAINST
SESSION FIXATION

In this section, we list three alternative approaches to
counter Session Fixation. The proposed techniques were de-
signed to fit different situations in respect to the degree of
control of the vulnerable application’s source code or the
application server respectively.

3.1 Code-level countermeasures
As described above, the root cause of Session Fixation

problems is in general a mismatch in the implementations
of the session handling, which usually is done on the frame-
work level, and the authentication management, which is
realized on the application layer. Consequently, to be se-
cure against Session Fixation, the application’s developer
has to renew a user’s session identifier manually every time
this user’s authentication state changes (see Listing 1). Note
that only the SID is renewed but the stored session data (e.g.
a shopping cart) is then tied to the new SID.

1 if ($authentication_successful){
2 $_session [" authenticated "] = true;
3 session_regenerate_id ();
4 }

Listing 1: Example – code based Session Fixation
protection in PHP [16]

While for newly written applications this requirement can
be fulfilled rather straight forward, the same task might
prove hard for non-trivial legacy applications, depending on
the complexity of the application’s authentication manage-
ment and its degree of encapsulation within the code base.

In addition, assessing if a given application is suscepti-
ble to Session Fixation based on the application’s source
code alone is also non-trivial. In most cases, a manual test
through monitoring and manipulating HTTP communica-
tion with the application is easier (see Fig. 2):

SID before
Auth?

Not
vulnerableNo

yes

Reissues SID
after Auth? Yes Not

vulnerable

no

Accepts SIDs
in URLs?

Vulnerable to
attacker controlled

Cookies
No

yes

Vulnerable

Figure 2: Testing methodolgy

To experimentally test an application’s susceptibility to
Session Fixation attacks, one can adhere to the following
testing methodology: First, it has to be verified that the ap-
plication indeed issues SIDs before any authentication pro-
cesses have been undertaken. Then, it should be tested if
the application leaves the SID unchanged in case a success-
ful authentication process has happened. If these tests could
be answered with ‘yes’, it can be concluded that under cer-
tain circumstances the application exposes susceptibility to
Session Fixation attacks.

3.2 Protection on the framework level
As described above, the divide between the framework’s

session tracking and the application’s authentication man-
agement is responsible for Session Fixation vulnerabilities.
To overcome this divide, we designed a transparent, light-
weight solution that takes protective measures on the frame-
work level.

3.2.1 Protection methodology
Our approach functions by mirroring the advised behaviour

of Section 3.1 within the application framework: Whenever
an authentication process has been executed, the session
identifier gets regenerated. However, on the framework level
no knowledge about the internal processes of the application
exists. Therefore, the protection mechanism has to deduct
that an authentication process has taken place through ob-
servations of data that is available on the framework level.

While many characteristics in respect to observable appli-
cation behaviour is depended on the utilized combination of
application framework and server, we expect one data source
to be available universally: The ongoing HTTP communica-
tion between user and application. Therefore, our solution
aims to derive the information regarding authentication pro-
cesses from this data.

We propose the following methodology: The countermea-
sure is integrated in the framework’s component that is re-
sponsible for parsing incoming HTTP requests. These re-
quests are examined whether they contain HTTP parame-
ters that might carry password data. Such parameters can
simply be identified by their name, which in turn was pre-
configured by the application’s operator. Whenever such a
parameter is detected in an incoming request, the framework
internal functions for session identifier regeneration are trig-
gered to create a new SID value for the user. This approach
renews the session identifier even if the authentication at-
tempt fails. However, this does not pose a problem as the
user and the application then share a new valid SID.

3.2.2 Implementation and evaluation
For our practical experiments, we chose the J2EE appli-

cation framework [19] as the implementation target. We
realised the actual protection mechanism in the form of a
J2EE filter. J2EE filters are a properly defined way to add
framework components to applications that intercept all in-
coming and/or outgoing HTTP communication (see Fig. 3).
Our filter implements the functionality as described above:
All incoming HTTP requests are examined for HTTP pa-
rameters which carry the name of a pre-configured password
field. If such a parameter was found, the J2EE session con-
tainer is triggered to reissue a fresh JSESSIONID value to
the user’s session - so, the session data remains with a new
identifier.

Realising the mechanism in the form of a J2EE filter has
several advantages: Foremost, no changes to the application-
server have to be applied - all necessary components are part
of a deployable application. Furthermore, to integrate our
mechanism into an existing application only minor changes
to the application’s web.xml meta-file have to be applied.
The only configuration that has to be done is providing the
name(s) of the application’s password parameter(s). Thus,
outfitting an existing J2EE application with our solution is
easily and quickly done.

Figure 3: J2EE Filter

We tested our implementation manually using a vulnera-
ble J2EE application. For this purpose, we chose the open
source J2EE based Wiki JamWiki, Version 0.8.0 [1] which
is susceptible to Session Fixation1. After installing the soft-
ware on our testsystem, we verified that the installed version
is in fact vulnerable, using the testing method outlined in
Section 3.1.

In the next step, we added our J2EE filter to the installa-
tion and entered the name of JAMWiki’s password parame-
ter (”j_password”) to the filter’s configuration file. Finally,
after restarting the application server, we verified that after
every login attempt, the JSESSIONID value indeed changes
and, thus, the vulnerability was properly mitigated.

3.3 Protection via a reverse proxy
In certain situations, it is neither feasible to fix a vul-

nerable application’s source code nor to apply a framework
level countermeasure, as described in Section 3.2. Such
scenario include, for instance, the hosting of closed source
applications, mission critical applications which cannot be
patched timely because of otherwise expected downtime, or
legacy applications that require frameworks which do not
support session re-generation, such as PHP prior to ver-
sion 4.3.2 [16]. Furthermore, sometimes a short-term so-
lution is needed even if an application inherent fix can be
applied later, e.g., when an identified vulnerability is under
active attack and the fix is still under development.

In all these scenarios an application external solution is re-
quired – a generic self standing protection mechanism that
does not necessitate alteration of the actual application or
its application server. In this section, we propose a method
for transparent, proxy-based protection against Session Fix-
ation attacks for such scenarios.

3.3.1 Challenges
To implement such a solution several hurdles have to be

overcome. In this section, we list the identified problems
and briefly outline our corresponding solutions.

1We discovered the software’s vulnerability during our first
experiments with Session Fixation. The JAMWiki’s authors
have been notified and a fix is on its way.

• Application external solution: The protection mech-
anism necessarily has to take its measures outside of
the actual application as in the given situation (see
above) resolving the situation directly at the applica-
tion is not possible. Consequently, we designed our
solution in the form of a server-side reverse proxy.

• Complementing the application’s session man-
agement: Our proxy has no direct control over the
application’s internal session management, unlike our
solution that we presented in Section 3.2. For this rea-
son, our solution has to be able to invalidate fixed ses-
sions while maintaining legitimate application usage.
We solve this problem through the introduction of a
secondary session identifier that is issued by the proxy
(PSID). The proxy’s identifier management compo-
nent is tightly secured against Session Fixation and
only requests which carry a valid PSID are forwarded
by the proxy to the actual Web application.

• Login detection: Similar to the framework-level so-
lution described in Section 3.2, detecting that a login
process has happened is crucial for the solution to func-
tion properly. We tackle this problem analogously.

In the following section we give details how we solved the
above mentioned problems.

3.3.2 Protection methodology
As outlined above, we introduce a proxy which monitors

the communication between the user and the vulnerable ap-
plication. The proxy implements a second level session iden-
tifier management. In addition to the SIDs that are set
by the application, the proxy issues a second identifier (the
proxy SID – PSID).

Whenever an HTTP request without a PSID value is re-
ceived by the proxy, this request is regarded to be the user’s
very first request to the application. If the request carries
any stale SID values, such data is discarded. For the cor-
responding HTTP response a fresh PSID value is generated
and attached to the response via set-cookie (see Fig. 4).
In the course of the following HTTP communication, the
application’s responses are monitored for outgoing SID val-
ues that are to be assigned from the application to the user.
If such a value is detected, the combination of the PSID
and SID value is stored by the proxy. From now on, only
requests that contain a valid combination of these two val-
ues are forwarded to the application (see Fig. 5). Requests
that are received with an invalid combination of SID/PSID
are treated as if they would carry no session information.
Consequently, they are stripped off all Cookie headers be-
fore sending them to the application and are outfitted with
a fresh PSID value upon response.

Figure 4: Introduction of the proxy session identi-
fier.

Figure 5: Verification of the proxy session identifier.

To provide protection against Session Fixation, the proxy
monitors the HTTP requests’ data for incoming password
parameters. If a request contains such a parameter, the
proxy assumes that an authentication process has happened
and renews the PSID value, adds an according Set-Cookie header
to the corresponding HTTP response, and invalidates the
former PSID/SID combination. This way, only the session
identifier is renewed whereas the session data remains un-
changed. The SID is even renewed if the authentication
attempt fails. This, however, is no threat as the new SID
does not carry any security assumptions.

3.3.3 Implementation and evaluation
To test our approach, we implemented a prototype in

Python. The reason why we chose Python instead of an-
other programming language is because Python’s features
make it ideal for fast prototyping.

We utilized CherryPy [2] as the basis for the proxy server.
CherryPy is a lightweight Web framework which offers a
smart interface for developers of Web applications. Cher-
ryPy only provides the framework for handling incoming re-
quests and rendering responses to clients, hence, providing
the proxy’s frontend. For backend communication with the
vulnerable application the python module Urllib2 [3] was
used. It provides methods for retrieving data from a URL
using either HTTP GET or POST requests. Furthermore
it offers the needed possibility to access cookies which were
involved within the communication with the URL.

The proxy implements the issuing and verification of PSIDs
as described above. The PSID value is stripped off incom-
ing requests before they are forwarded to the application to
avoid potential problems that some applications might ex-
pose when they receive unexpected parameters or headers.

To verify the provided protection, we again tested our im-
plementation against JAMWiki. We both passively observed
the proxy’s behaviour in respect to ongoing login processes
as well as actively attempted Session Fixation attacks.

3.4 Discussion
In this section we presented three different protective mea-

sures that can be utilized by a Web application’s operator
to avoid Session Fixation problems. Each of the measures
is targeted at a distinct scenario in respect to the level of
control that the operator has when it comes to altering the
Web application’s internals.

Fixing the problem within the application logic through
reworking the authentication handling code, as shown in
Section 3.1, should always be the first choice as long as no
restrictions exist when it comes to altering the source code
and timely applying the resulting security patch. The main
problem that can be encountered in this scenario is that the
authentication and session handling code in a given applica-
tion might turn out to be non-trivial and spread thorough
the code. For the fix to function properly, it is essential

that all code segments, in which a user’s authorization level
changes because of an authentication process, are addressed
correctly. If one of such processes is missed in the creation
of the security patch, the protection is incomplete. For this
reason, handling of Session Fixation should be integral part
of the software development process and be addressed from
the begin on.

The second proposed measure (see Sec. 3.2) is applica-
ble if a direct alteration of the application’s source code is
not feasible but the utilized application server and frame-
work are under full control. Such situations mainly arise, if
the operator of the application is a different entity than the
application’s developer. This applies, e.g., for third party
components, closed source applications, or legacy applica-
tions for which the original author has left the company long
time ago. The described approach provides reliable protec-
tion, as every authentication process causes the framework
to renew the SID value. Furthermore, the approach is very
light-weight. This stems from two characteristics: For one,
the mechanism is completely stateless. It does not require
temporary storage of any data as it only reacts based on
incoming password parameters. Furthermore, it is closely
integrated in the existing framework infrastructure. Conse-
quently, there is no need to execute any complex operations
on its own – all the hard work, such as parsing the HTTP
headers and parameters, is already handled by the applica-
tion framework. These characteristics resulted in a runtime
behaviour that, at least if implemented in the form of a J2EE
filter, does not cause noticeable performance overhead. Fi-
nally, as the mechanism operates completely transparent to
the application an addition to an existing application is easy
and straight forward. The main drawback is that the coun-
termeasure is application framework specific. If for a given
application changes in the runtime infrastructure are taken,
such as exchanging the underlying application server, the
protection might be lost and has to be reintroduced – a char-
acteristic that does not apply to handling Session Fixation
directly on the source code level.

The third discussed countermeasure (see Sec. 3.3) is to be
used whenever no changes at all to the vulnerable system
are possible (see above for a list of reasons). It is designed
to be completely self-standing and can be set up to protect
arbitrary Web applications simply by positioning it between
the application and the user. It is very reasonable to expect
that the proposed mechanism can easily be integrated in an
existing Web application firewall (WAF) [15]. WAFs are in
essence Web proxies which were introduced for the exact
same scenario as the discussed countermeasure – to protect
against Web application attacks without altering the appli-
cation itself. Consequently, WAFs already handle all oper-
ations, such as parsing incoming requests, that are required
by our countermeasure. In turn, our countermeasure itself
is comparatively light-weight and does not add significant
complexity to a WAF’s functionality.

As mentioned above, which of the three described mea-
sures is to be taken, depends on the given situation. In
general, if possible, the solution that is most closely inte-
grated in the application’s core functionality should be cho-
sen to reduce setup complexity and avoid potential security
regression due to future changes in the application’s infras-
tructure.

4. RELATED WORK
Session Fixation has received little attention in the past,

mostly due to the vulnerability’s obscurity and the fact that
more severe XSS vulnerabilities are still very common in
current Web applications.

Vulnerability documentation: To the best of our knowl-
edge, [12] was the first public paper on Session Fixation. It
describes the basic fundamentals of the attack and the most
obvious attack vectors. In contrast to this paper, it provides
no information about the spreading of the vulnerability or
more advanced attack schemes. Nevertheless it is the main
source for information about Session Fixation up to now.
Furthermore, OWASP and WASC added articles about Ses-
sion Fixation to their security knowledge bases [20, 21]. Fi-
nally, we recently published a survey paper on Session Fix-
ation in which we practically assessed how wide spread the
vulnerability pattern is in today’s applications [18].

Related protection mechanisms: Web application fire-
walls are server-side proxies that aim to mitigate security
problems. However, as the OWASP best practices guide
on Web Application Firewalls (WAF) [15] states, current
WAFs can only prevent Session Fixation “if the WAF man-
ages the sessions itself.” In comparison, our approach does
not touch the application level session management and only
introduces additional security related information for each
request.

Furthermore, several protection techniques have been pro-
posed that utilize proxies to mitigate related Web applica-
tion vulnerabilities. For one, [10, 7] describe proxy solutions
to counter Cross-site Scripting attacks. Furthermore, [8, 9]
propose related techniques for Cross-site Request Forgery
protection. Finally, [14] presents a proxy for client-side de-
tection of SSL stripping attack.

5. FUTURE WORK
The next step will be to transfer the protection to the

client-side. As discussed before, Session Fixation is an at-
tack that targets the end-user. In consequence, a user’s mea-
sures to protect himself are rather limited, if a Web appli-
cation’s operator is unaware or chooses to ignore potential
Session Fixation problems. In theory, our proxy based solu-
tion (see Sec. 3.3) is suited to be installed on the client-side
as a companion to the Web browser. However, unlike on the
server-side, the issue of configuring the proxy is non-trivial.
To enable the proxy’s protection mechanism, the names of
the SID and password parameters have to be made known to
the proxy. Expecting a manual per-site configuration done
by the user is unrealistic. Instead suitable measure to do
this configuration step automatically have to be found, i.e.,
robust heuristics that reliably identify password and SID
parameters. Achieving this is still subject to future work.

Another step of our future work is the analysis of Ses-
sion Fixation attack surface in identity management sys-
tems. The authentication protocol as well as the actual au-
thentication token are of major importance in this scenario.
New protection measures need to be taken in presence of
multi-party authentication protocols to prevent access to a
set of services.

6. CONCLUSION
In this paper, we thoroughly examined Session Fixation:

We showed how Session Fixation vulnerabilities arise, how

they can be exploited, what the impact of a successful attack
is, and what relations to more common issues exist (Sec. 2).
In addition, we described the fundamental problem of HTTP
sessions and the mismatch of responsibilities that leads to
Session Fixation scenarios. We outlined several attack vec-
tors that may be used to prepare Session Fixation attacks.
We pointed out the common context of these attacks as well
as their differences.

Based on our observations, we proposed three distinct
server-side measures against Session Fixation: For one, we
showed how to avoid the problem in the applications’ devel-
opment phase (Sec. 3.1). Furthermore, we presented two
approaches to fix running Web applications with reason-
able interference (Secs 3.2 and 3.3). These countermeasures
require minimal configuration effort, which solely consists
in providing the parameter names of the session identifier
and password fields, thus, allowing fast and easy mitigating
freshly detected Session Fixation issues. Our countermea-
sures are robust in respect to failed login attempts as the
actual link between the server-side session storage and the
application’s user is preserved in all cases.

In sum, we provided defensive solutions for all potential
scenarios in respect to control over an application’s source
code which can be encountered when operating a Web ap-
plication and, thus, achieve complete protection coverage
against Session Fixation attacks.

7. ACKNOWLEDGEMENTS
This work was in parts supported by the EU Project Web-

Sand (FP7-256964), http://www.websand.eu. The support
is gratefully acknowledged.

8. REFERENCES
[1] JAMWiki. [software], http://jamwiki.org/, Version

0.8.0, December 2009.

[2] CherryPy - Lightweight, pythonic web framework.
[software], http://www.cherrypy.org/, April 2010.

[3] URLlib2 - Python HTTP URL opener library.
[software],
http://docs.python.org/library/urllib2.html,
April 2010.

[4] W. Alcorn. Inter-Protocol Exploitation. Whitepaper,
NGSSoftware Insight Security Research (NISR),
http://www.ngssoftware.com/research/papers/

InterProtocolExploitation.pdf, March 2007.

[5] D. Endler. The Evolution of Cross-Site Scripting
Attacks. Whitepaper, iDefense Inc.,
http://www.cgisecurity.com/lib/XSS.pdf, May
2002.

[6] R. Fielding, J. Gettys, J. Mogul, H. Frystyk,
L. Masinter, P. Leach, and T. Berners-Lee. Hypertext
transfer protocol – http/1.1. RFC 2616, http:
//www.w3.org/Protocols/rfc2616/rfc2616.html,
June 1999.

[7] M. Johns. SessionSafe: Implementing XSS Immune
Session Handling. In European Symposium on
Research in Computer Security (ESORICS 2006),
volume 4189 of LNCS. Springer, September 2006.

[8] M. Johns and J. Winter. RequestRodeo: Client Side
Protection against Session Riding. In F. Piessens,
editor, OWASP Europe 2006, May 2006.

[9] N. Jovanovic, C. Kruegel, and E. Kirda. Preventing
cross site request forgery attacks. In Proceedings of the
IEEE International Conference on Security and
Privacy for Emerging Areas in Communication
Networks (Securecomm 2006), 2006.

[10] E. Kirda, C. Kruegel, G. Vigna, and N. Jovanovic.
Noxes: A Client-Side Solution for Mitigating Cross
Site Scripting Attacks. In 21st ACM Symposium on
Applied Computing (SAC 2006), April 2006.

[11] A. Klein. ”Divide and Conquer” - HTTP Response
Splitting, Web Cache Poisoning Attacks, and Related
Topics. Whitepaper, Sanctum Inc.,
http://packetstormsecurity.org/papers/general/

whitepaper_httpresponse.pdf, March 2004.

[12] M. Kolsek. Session Fixation Vulnerability in
Web-based Applications. Whitepaper, Acros Security,
http://www.acrossecurity.com/papers/session_

fixation.pdf, December 2002.

[13] D. Kristol and L. Montulli. HTTP State Management
Mechanism. RFC 2965,
http://www.ietf.org/rfc/rfc2965.txt, October
2000.

[14] N. Nikiforakis, Y. Younan, and W. Joosen. Hproxy:
Client-side detection of ssl stripping attacks. In
Seventh Conference on Detection of Intrusions and
Malware & Vulnerability Assessment (DIMVA’10),
2010.

[15] OWASP German Chapter. OWASP Best Practices:
Use of Web Application Firewalls. [whitepaper],
http://www.owasp.org/index.php/Category:

OWASP_Best_Practices:

_Use_of_Web_Application_Firewalls, July 2008.

[16] PHP Group. session regenerate id(). PHP
documentation, [online], http://www.php.net/
manual/de/function.session-regenerate-id.php

(4/4/10), June 2010.

[17] J. Ruderman. The Same Origin Policy. [online],
http://www.mozilla.org/projects/security/

components/same-origin.html (01/10/06), August
2001.

[18] M. Schrank, B. Braun, M. Johns, and J. Posegga.
Session Fixation - the Forgotten Vulnerability? In
Proceedings of GI Sicherheit 2010, Lecture Notes in
Informatics (LNI), 2010.

[19] Sun Microsystems Inc. J2EE - Java Platform
Enterprise Edition 5. [online], http:
//java.sun.com/javaee/technologies/javaee5.jsp,
(05/05/07), 2007.

[20] The Open Web Application Security Project
(OWASP). Session Fixation. [online], http:
//www.owasp.org/index.php/Session_Fixation,
February 2009.

[21] The Web Application Security Consortium (WASC).
Session Fixation. [online],
http://projects.webappsec.org/Session-Fixation,
January 2010.

[22] J. Topf. The html form protocol attack. TechNote,
http://www.remote.org/jochen/sec/hfpa/hfpa.pdf,
August 2001.

[23] M. Zalewski. Cross Site Cooking. Whitepaper,
http://www.securiteam.com/securityreviews/

5EP0L2KHFG.html, January 2006.

